1. Resources
1.1
discount_calculator
1.1.1
discount_calculator()
A Streamlit-based interactive discount calculator.
Source code in src/resources/discount_calculator.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
|
1.2
graphs
1.2.1
display_all_graphs(credentials_status)
Displays various graphs based on the availability of credentials.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
credentials_status
|
bool
|
The status indicating if credentials are valid. |
required |
Source code in src/resources/graphs.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
1.2.2
gender_status(df, year)
Calculate and visualize the gender distribution by product status for a given year.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The sales data. |
required |
year
|
int
|
The year to filter the data for. |
required |
Source code in src/resources/graphs.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
|
1.2.3
interest_category(df, year)
Analyzes and visualizes the number of likes per product category for a given year.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The DataFrame containing sales data. |
required |
year
|
int
|
The year for which to filter and analyze the data. |
required |
Displays
A bar chart in Streamlit showing the number of likes per product category.
Source code in src/resources/graphs.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
1.2.4
money_month(df, year)
Calculates and visualizes the total money earned per month for a given year.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The DataFrame containing sales data. |
required |
year
|
int
|
The year for which to calculate the total money earned per month. |
required |
Source code in src/resources/graphs.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
1.2.5
product_month(df, year)
summary
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
description |
required |
year
|
int
|
description |
required |
Source code in src/resources/graphs.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
1.2.6
status_country(df, year)
Calculate and visualize the product status distribution by country for a given year.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The sales data. |
required |
year
|
int
|
The year to filter the data for. |
required |
Returns:
Type | Description |
---|---|
None
|
plotly.graph_objs.Figure: The heatmap figure. |
Source code in src/resources/graphs.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|