3. Natural Language Processing
3.1
moe
3.1.1
ExpertModel(input_dim, output_dim, hidden_dim)
Modelo experto individual para MoE
Initializes an expert model with a simple feed-forward network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_dim
|
int
|
Dimensionality of the input data. |
required |
output_dim
|
int
|
Dimensionality of the output data. |
required |
hidden_dim
|
int
|
Dimensionality of the hidden layer. |
required |
Source code in src/layers/nlp/moe.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
|
3.1.1.1
forward(input_tensor)
Forward pass through the expert model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_tensor
|
Tensor
|
Input tensor to the model. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The model's output tensor. |
Source code in src/layers/nlp/moe.py
34 35 36 37 38 39 40 41 42 43 44 45 |
|
3.1.2
Gating(input_dim, num_experts, dropout_rate=0.2)
Gating mechanism to select experts.
Initializes a gating network for expert selection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_dim
|
int
|
Dimensionality of the input data. |
required |
num_experts
|
int
|
Number of experts to select from. |
required |
dropout_rate
|
float
|
Rate of dropout for regularization. |
0.2
|
Source code in src/layers/nlp/moe.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|
3.1.2.1
forward(input_tensor)
Forward pass through the gating network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_tensor
|
Tensor
|
Input tensor to the network. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Softmax probabilities for expert selection. |
Source code in src/layers/nlp/moe.py
84 85 86 87 88 89 90 91 92 93 94 95 |
|
3.1.3
MoE(trained_experts, input_dim, dropout_rate=0.2)
Mixture of Experts
Initializes a mixture of experts with gating.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
trained_experts
|
list[ExpertModel]
|
List of trained expert models. |
required |
input_dim
|
int
|
Dimensionality of the input data. |
required |
dropout_rate
|
float
|
Rate of dropout in the gating network. |
0.2
|
Source code in src/layers/nlp/moe.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
3.1.3.1
forward(input_tensor)
Forward pass through the mixture of experts.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_tensor
|
Tensor
|
Input tensor to the model. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Weighted sum of expert outputs. |
Source code in src/layers/nlp/moe.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
3.2
transformer
3.2.1
DecoderBlock(d_model, d_ff, h, dropout_rate)
Decoder block with masked attention, cross-attention, and feed-forward layers.
Initializes decoder block.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d_model
|
int
|
Dimensionality of model embeddings. |
required |
d_ff
|
int
|
Dimensionality of feed-forward layer. |
required |
h
|
int
|
Number of attention heads. |
required |
dropout_rate
|
float
|
Rate of dropout for regularization. |
required |
Source code in src/layers/nlp/transformer.py
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
|
3.2.1.1
forward(decoder_input, encoder_output, src_mask=None, tgt_mask=None)
Forward pass through decoder block.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
decoder_input
|
Tensor
|
Input tensor to the decoder block. |
required |
encoder_output
|
Tensor
|
Output tensor from the encoder. |
required |
src_mask
|
Tensor | None
|
Optional source mask tensor. |
None
|
tgt_mask
|
Tensor | None
|
Optional target mask tensor. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Tensor after processing by the decoder block. |
Source code in src/layers/nlp/transformer.py
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
|
3.2.2
EncoderBlock(d_model, d_ff, h, dropout_rate)
Encoder block with attention and feed-forward layers.
Initializes encoder block.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d_model
|
int
|
Dimensionality of model embeddings. |
required |
d_ff
|
int
|
Dimensionality of feed-forward layer. |
required |
h
|
int
|
Number of attention heads. |
required |
dropout_rate
|
float
|
Rate of dropout for regularization. |
required |
Source code in src/layers/nlp/transformer.py
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
|
3.2.2.1
forward(input_tensor, mask=None)
Forward pass through encoder block.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_tensor
|
Tensor
|
Input tensor to the encoder block. |
required |
mask
|
Tensor | None
|
Optional mask tensor. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Tensor after processing by the encoder block. |
Source code in src/layers/nlp/transformer.py
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
|
3.2.3
FeedForward(d_model, d_ff, dropout_rate)
Feed-forward neural network layer.
Initializes feed-forward network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d_model
|
int
|
Dimensionality of model embeddings. |
required |
d_ff
|
int
|
Dimensionality of feed-forward layer. |
required |
dropout_rate
|
float
|
Rate of dropout for regularization. |
required |
Source code in src/layers/nlp/transformer.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
3.2.3.1
forward(input_tensor)
Forward pass through feed-forward network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_tensor
|
Tensor
|
Tensor of input embeddings. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Tensor processed by feed-forward network. |
Source code in src/layers/nlp/transformer.py
202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
3.2.4
InputEmbedding(d_model, vocab_size)
Embeds input tokens into vectors of dimension d_model.
Initializes input embedding layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d_model
|
int
|
Dimensionality of the embedding vectors. |
required |
vocab_size
|
int
|
Size of the vocabulary. |
required |
Source code in src/layers/nlp/transformer.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
|
3.2.4.1
forward(input_tensor)
Forward pass through the embedding layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_tensor
|
Tensor
|
Input tensor of token indices. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Tensor of embedded input scaled by sqrt(d_model). |
Source code in src/layers/nlp/transformer.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
|
3.2.5
LayerNormalization(features, eps=1e-06)
Applies layer normalization to input embeddings.
Initializes layer normalization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
int
|
Number of features in the input. |
required |
eps
|
float
|
Small constant for numerical stability. |
1e-06
|
Source code in src/layers/nlp/transformer.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|
3.2.5.1
forward(input_embedding)
Forward pass for layer normalization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_embedding
|
Tensor
|
Tensor of input embeddings. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Normalized tensor. |
Source code in src/layers/nlp/transformer.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
3.2.6
MultiHeadAttention(d_model, h, dropout_rate)
Applies multi-head attention mechanism.
Initializes multi-head attention layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d_model
|
int
|
Dimensionality of model embeddings. |
required |
h
|
int
|
Number of attention heads. |
required |
dropout_rate
|
float
|
Rate of dropout for regularization. |
required |
Source code in src/layers/nlp/transformer.py
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
3.2.6.1
attention(k, q, v, mask=None, dropout=None)
staticmethod
Computes scaled dot-product attention.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
k
|
Tensor
|
Key tensor. |
required |
q
|
Tensor
|
Query tensor. |
required |
v
|
Tensor
|
Value tensor. |
required |
mask
|
Tensor | None
|
Optional mask tensor. |
None
|
dropout
|
Dropout | None
|
Optional dropout layer. |
None
|
Returns:
Type | Description |
---|---|
Tuple of attention output and scores. |
Source code in src/layers/nlp/transformer.py
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
3.2.6.2
forward(k, q, v, mask=None)
Forward pass through multi-head attention.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
k
|
Tensor
|
Key tensor. |
required |
q
|
Tensor
|
Query tensor. |
required |
v
|
Tensor
|
Value tensor. |
required |
mask
|
Tensor | None
|
Optional mask tensor. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Tensor after attention and concatenation. |
Source code in src/layers/nlp/transformer.py
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
3.2.7
PositionalEncoding(d_model, sequence_length, dropout_rate)
Adds positional encoding to input embeddings.
Initializes positional encoding layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d_model
|
int
|
Dimensionality of the embedding vectors. |
required |
sequence_length
|
int
|
Maximum sequence length. |
required |
dropout_rate
|
float
|
Rate of dropout for regularization. |
required |
Source code in src/layers/nlp/transformer.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
3.2.7.1
forward(input_embedding)
Forward pass to add positional encoding.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_embedding
|
Tensor
|
Tensor of input embeddings. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Tensor of embeddings with added positional encoding. |
Source code in src/layers/nlp/transformer.py
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
3.2.8
ProjectionLayer(d_model, vocab_size)
Converts d_model dimensions back to vocab_size.
Initializes projection layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
d_model
|
int
|
Dimensionality of model embeddings. |
required |
vocab_size
|
int
|
Size of the vocabulary. |
required |
Source code in src/layers/nlp/transformer.py
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
|
3.2.8.1
forward(input_tensor)
Forward pass through projection layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_tensor
|
Tensor
|
Input tensor to the projection layer. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Tensor with projected dimensions. |
Source code in src/layers/nlp/transformer.py
571 572 573 574 575 576 577 578 579 580 581 582 |
|
3.2.9
ResidualConnection(features, dropout_rate)
Applies residual connection around a sublayer.
Initializes residual connection layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
int
|
Number of features in the input. |
required |
dropout_rate
|
float
|
Rate of dropout for regularization. |
required |
Source code in src/layers/nlp/transformer.py
374 375 376 377 378 379 380 381 382 383 384 385 386 |
|
3.2.9.1
forward(input_tensor, sublayer)
Forward pass using residual connection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_tensor
|
Tensor
|
Input tensor to the residual layer. |
required |
sublayer
|
Module
|
Sublayer to apply within the residual connection. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Tensor with residual connection applied. |
Source code in src/layers/nlp/transformer.py
388 389 390 391 392 393 394 395 396 397 398 399 400 |
|
3.2.10
Transformer(src_vocab_size, tgt_vocab_size, src_seq_len, tgt_seq_len, num_encoders, num_decoders, d_model, d_ff, h, dropout_rate)
Transformer model with encoder and decoder blocks.
Initializes transformer model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src_vocab_size
|
int
|
Size of source vocabulary. |
required |
tgt_vocab_size
|
int
|
Size of target vocabulary. |
required |
src_seq_len
|
int
|
Maximum source sequence length. |
required |
tgt_seq_len
|
int
|
Maximum target sequence length. |
required |
num_encoders
|
int
|
Number of encoder blocks. |
required |
num_decoders
|
int
|
Number of decoder blocks. |
required |
d_model
|
int
|
Dimensionality of model embeddings. |
required |
d_ff
|
int
|
Dimensionality of feed-forward layer. |
required |
h
|
int
|
Number of attention heads. |
required |
dropout_rate
|
float
|
Rate of dropout for regularization. |
required |
Source code in src/layers/nlp/transformer.py
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
|
3.2.10.1
decode(decoder_input, encoder_output, src_mask=None, tgt_mask=None)
Decodes target input tensor using decoder blocks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
decoder_input
|
Tensor
|
Input tensor to the decoder. |
required |
encoder_output
|
Tensor
|
Output tensor from the encoder. |
required |
src_mask
|
Tensor | None
|
Optional source mask tensor. |
None
|
tgt_mask
|
Tensor | None
|
Optional target mask tensor. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Decoded tensor. |
Source code in src/layers/nlp/transformer.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
|
3.2.10.2
encode(encoder_input, src_mask=None)
Encodes source input tensor using encoder blocks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
encoder_input
|
Tensor
|
Input tensor to the encoder. |
required |
src_mask
|
Tensor | None
|
Optional source mask tensor. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Encoded tensor. |
Source code in src/layers/nlp/transformer.py
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
3.2.10.3
forward(src, tgt, src_mask=None, tgt_mask=None)
Processes input and target sequences through the encoder and decoder, applying optional source and target masks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src
|
Tensor
|
Input sequence tensor. |
required |
tgt
|
Tensor
|
Target sequence tensor. |
required |
src_mask
|
Tensor | None
|
Optional mask for the input sequence. |
None
|
tgt_mask
|
Tensor | None
|
Optional mask for the target sequence. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Tensor containing the final output after projection. |
Source code in src/layers/nlp/transformer.py
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
|